学霸和学渣的大脑,有什么不同

白癜风 https://m-mip.39.net/nk/mipso_4779916.html

制图:伊娃·巴斯克斯(EvaVazquez)

神经科学家一直认为,在学习时,大脑只会增强神经元之间的神经突触连接。但近年来,一些新的研究表明神经元之间突触连接的增强,并不能完全解释大脑在学习过程中的变化。而最让人惊讶的一个发现是,我们在学习和记忆时,神经元轴突上的“绝缘层”的厚度会发生变化,而这种厚度的变化,可以调节神经信号的传递,让大脑不同区域的神经元在电活动上实现同步——这一点,在我们的学习和记忆过程中起着关键作用。

撰文

道格拉斯·菲尔茨(DouglasFields)

翻译

姜海纶

人类的大脑是如何完成学习任务的?这方面的研究可以追溯到伊万·巴甫洛夫(IvanPavlov)的经典反射实验。在这个实验中,他发现狗一听到铃声,就会流出口水。年,加拿大心理学家唐纳德·赫布(DonaldHebb)利用巴甫洛夫的“联想学习法则”(associativelearningrule),解释了大脑细胞获取新知识的机制。赫布提出,当两个神经元一起被激活,并且同时产生信号时,它们之间的突触连接会变得更强。如果发生这种情况,就说明大脑正在学习。这个观点引出了一个被广泛接受的理论:一起放电的神经元,是通过神经突触相连的。

这一理论比较详细地描述了学习过程中,神经突触在分子层面的变化,并且得到了很多证据的支持。但是,并不是所有奖赏或惩罚我们都会记得,实际上大多数经历都被遗忘了。有时候,即使神经突触能被一起激活,但它们并没有连接在一起。我们的大脑能否保留记忆,其实取决于很多因素,比如我们对某次经历的情感反应;这是不是一次全新的体验;这次经历是在什么时间和地点发生的……随后,在睡觉时,我们的大脑会对这些想法和感受进行加工处理。到目前为止,我们一直专注于研究神经突触,对于大脑学习及记忆的机制,我们也有了一些粗略的理解。

事实证明,仅仅增强神经突触,是没法产生记忆的。为了形成连贯的记忆,整个大脑需要产生大量的变化。无论是回忆昨天晚餐时与客人的对话,还是学会骑自行车等后天技能,大脑多个不同区域的数以百万计的神经元都需要产生神经活动,形成包括情感、画面、声音、气味、事情经过和其他体验在内的连贯记忆。

因为学习过程涉及到生活体验的很多要素,所以在这一过程中,除了突触变化外,必定也会有很多其他细胞活动参与进来。这种认识也让科学家开始寻找新的方式,来理解神经信号如何在大脑中传输、处理和存储,进而让大脑完成学习过程。在过去十年中,神经科学家已经意识到,人类大脑表层的灰质并不是唯一参与永久记忆形成的区域。研究发现,大脑皮层下方的区域在学习中也发挥着关键作用。最近几年中,我的研究团队和其他研究人员通过一系列的研究阐明了相关的过程。这些研究有益于发现治疗精神障碍和发育障碍的新方法,这两种健康问题往往和学习障碍有关。

如果神经突触的增强不足以说明大脑在学习时发生的变化,那么在学习新东西时大脑中会发生什么?现在,研究人员能利用磁共振成像(MRI)观察大脑结构。在仔细检查磁共振成像的结果时,研究人员开始注意到,具有某些特定高超技能的人与普通人的大脑结构存在差异,例如音乐家的听觉皮层比其他人更厚。对此,研究人员最初的推测是,大脑结构上的细微差异让单簧管演奏家和钢琴家更善于学习音乐技能,但后续研究证实,是学习过程改变了大脑的结构。

能让脑组织发生改变的学习类型,并不局限于一些重复的动作训练,例如演奏乐器。瑞士洛桑大学的神经科学家波格丹·德拉甘基(BogdanDraganski)和同事证实,当医学生在考试前努力复习之后,他们大脑中的灰质体积就会增加。大脑中多种细胞的变化会增加灰质的体积,比如形成新的神经元和胶质细胞(非神经元细胞)。另外灰质中血管的变化,轴突和树突的生长和萎缩,也可能会使灰质体积发生变化。

值得注意的是,在学习过程中,大脑在生理结构上的变化速度可能比预期更快。以色列特拉维夫大学的亚尼夫·阿萨夫(YanivAssaf)和同事表示,在玩电脑游戏时,新玩家围绕赛道跑16圈就足以使大脑的海马区发生变化。在游戏中,玩家经常要用到导航功能,而这个功能与空间学习能力有非常密切的关系,因此与空间学习有关的海马区发生变化是合理的。但是,阿萨夫以及其他研究人员,特别是英国牛津大学的海迪·约翰森-伯格(HeidiJohansen-Berg)还惊讶地发现,一些意想不到的大脑区域也发生了变化,包括没有神经元或突触的区域,如大脑白质。

白质上的变化

由于人类的意识源于大脑皮层,因此研究人员希望在大脑的灰质中找到由学习引起的变化。在大脑皮层之下,有数十亿个紧密堆积的轴突束(神经纤维),将灰质中的神经元连接到神经通路中。

由于轴突上覆盖有髓磷脂(一种脂质),这些轴突束是白色的,因此大脑的这个部位也被称为白质(whitematter)。髓磷脂具有绝缘作用,能使电信号在轴突中的传输速度提高50~倍。由白质损伤导致的相关疾病是一个重要的研究领域,但是直到最近,科学家发现了髓磷脂可能在信息处理和学习中发挥作用,这一领域才得到足够的

转载请注明:http://www.ebsaw.com/jbzl/11647.html


网站简介 | 发布优势 | 服务条款 | 隐私保护 | 广告合作 | 网站地图 | 版权申明 |